Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Sphingolipid/Pkh1/2-TORC1/Sch9 Signaling Regulates Ribosome Biogenesis in Tunicamycin-Induced Stress Response in Yeast.

Identifieur interne : 000229 ( Main/Exploration ); précédent : 000228; suivant : 000230

Sphingolipid/Pkh1/2-TORC1/Sch9 Signaling Regulates Ribosome Biogenesis in Tunicamycin-Induced Stress Response in Yeast.

Auteurs : Yukari Yabuki [Japon] ; Atsuko Ikeda [Japon] ; Misako Araki [Japon] ; Kentaro Kajiwara [Japon] ; Keiko Mizuta [Japon] ; Kouichi Funato [Japon]

Source :

RBID : pubmed:30824472

Descripteurs français

English descriptors

Abstract

Reduced ribosome biogenesis in response to environmental conditions is a key feature of cell adaptation to stress. For example, ribosomal genes are transcriptionally repressed when cells are exposed to tunicamycin, a protein glycosylation inhibitor that induces endoplasmic reticulum stress and blocks vesicular trafficking in the secretory pathway. Here, we describe a novel regulatory model, in which tunicamycin-mediated stress induces the accumulation of long-chain sphingoid bases and subsequent activation of Pkh1/2 signaling, which leads to decreased expression of ribosomal protein genes via the downstream effectors Pkc1 and Sch9. Target of rapamycin complex 1 (TORC1), an upstream activator of Sch9, is also required. This pathway links ribosome biogenesis to alterations in membrane lipid composition under tunicamycin-induced stress conditions. Our results suggest that sphingolipid/Pkh1/2-TORC1/Sch9 signaling is an important determinant for adaptation to tunicamycin-induced stress.

DOI: 10.1534/genetics.118.301874
PubMed: 30824472
PubMed Central: PMC6499531


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Sphingolipid/Pkh1/2-TORC1/Sch9 Signaling Regulates Ribosome Biogenesis in Tunicamycin-Induced Stress Response in Yeast.</title>
<author>
<name sortKey="Yabuki, Yukari" sort="Yabuki, Yukari" uniqKey="Yabuki Y" first="Yukari" last="Yabuki">Yukari Yabuki</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528</wicri:regionArea>
<wicri:noRegion>Higashi-Hiroshima 739-8528</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ikeda, Atsuko" sort="Ikeda, Atsuko" uniqKey="Ikeda A" first="Atsuko" last="Ikeda">Atsuko Ikeda</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528</wicri:regionArea>
<wicri:noRegion>Higashi-Hiroshima 739-8528</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Araki, Misako" sort="Araki, Misako" uniqKey="Araki M" first="Misako" last="Araki">Misako Araki</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528</wicri:regionArea>
<wicri:noRegion>Higashi-Hiroshima 739-8528</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kajiwara, Kentaro" sort="Kajiwara, Kentaro" uniqKey="Kajiwara K" first="Kentaro" last="Kajiwara">Kentaro Kajiwara</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528</wicri:regionArea>
<wicri:noRegion>Higashi-Hiroshima 739-8528</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mizuta, Keiko" sort="Mizuta, Keiko" uniqKey="Mizuta K" first="Keiko" last="Mizuta">Keiko Mizuta</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528</wicri:regionArea>
<wicri:noRegion>Higashi-Hiroshima 739-8528</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Funato, Kouichi" sort="Funato, Kouichi" uniqKey="Funato K" first="Kouichi" last="Funato">Kouichi Funato</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan kfunato@hiroshima-u.ac.jp.</nlm:affiliation>
<country wicri:rule="url">Japon</country>
<wicri:regionArea>Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528</wicri:regionArea>
<wicri:noRegion>Higashi-Hiroshima 739-8528</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30824472</idno>
<idno type="pmid">30824472</idno>
<idno type="doi">10.1534/genetics.118.301874</idno>
<idno type="pmc">PMC6499531</idno>
<idno type="wicri:Area/Main/Corpus">000326</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000326</idno>
<idno type="wicri:Area/Main/Curation">000326</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000326</idno>
<idno type="wicri:Area/Main/Exploration">000326</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Sphingolipid/Pkh1/2-TORC1/Sch9 Signaling Regulates Ribosome Biogenesis in Tunicamycin-Induced Stress Response in Yeast.</title>
<author>
<name sortKey="Yabuki, Yukari" sort="Yabuki, Yukari" uniqKey="Yabuki Y" first="Yukari" last="Yabuki">Yukari Yabuki</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528</wicri:regionArea>
<wicri:noRegion>Higashi-Hiroshima 739-8528</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ikeda, Atsuko" sort="Ikeda, Atsuko" uniqKey="Ikeda A" first="Atsuko" last="Ikeda">Atsuko Ikeda</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528</wicri:regionArea>
<wicri:noRegion>Higashi-Hiroshima 739-8528</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Araki, Misako" sort="Araki, Misako" uniqKey="Araki M" first="Misako" last="Araki">Misako Araki</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528</wicri:regionArea>
<wicri:noRegion>Higashi-Hiroshima 739-8528</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kajiwara, Kentaro" sort="Kajiwara, Kentaro" uniqKey="Kajiwara K" first="Kentaro" last="Kajiwara">Kentaro Kajiwara</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528</wicri:regionArea>
<wicri:noRegion>Higashi-Hiroshima 739-8528</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mizuta, Keiko" sort="Mizuta, Keiko" uniqKey="Mizuta K" first="Keiko" last="Mizuta">Keiko Mizuta</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528</wicri:regionArea>
<wicri:noRegion>Higashi-Hiroshima 739-8528</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Funato, Kouichi" sort="Funato, Kouichi" uniqKey="Funato K" first="Kouichi" last="Funato">Kouichi Funato</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan kfunato@hiroshima-u.ac.jp.</nlm:affiliation>
<country wicri:rule="url">Japon</country>
<wicri:regionArea>Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528</wicri:regionArea>
<wicri:noRegion>Higashi-Hiroshima 739-8528</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Genetics</title>
<idno type="eISSN">1943-2631</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>3-Phosphoinositide-Dependent Protein Kinases (metabolism)</term>
<term>Endoplasmic Reticulum Stress (drug effects)</term>
<term>Gene Expression Regulation, Fungal (MeSH)</term>
<term>Protein-Serine-Threonine Kinases (metabolism)</term>
<term>Ribosomes (metabolism)</term>
<term>Saccharomyces cerevisiae (drug effects)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Signal Transduction (MeSH)</term>
<term>Sphingolipids (metabolism)</term>
<term>Transcription Factors (metabolism)</term>
<term>Tunicamycin (pharmacology)</term>
<term>Tunicamycin (toxicity)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>3-Phosphoinositide-dependent protein kinases (métabolisme)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Protein-Serine-Threonine Kinases (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Ribosomes (métabolisme)</term>
<term>Régulation de l'expression des gènes fongiques (MeSH)</term>
<term>Saccharomyces cerevisiae (effets des médicaments et des substances chimiques)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Sphingolipides (métabolisme)</term>
<term>Stress du réticulum endoplasmique (effets des médicaments et des substances chimiques)</term>
<term>Transduction du signal (MeSH)</term>
<term>Tunicamycine (pharmacologie)</term>
<term>Tunicamycine (toxicité)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>3-Phosphoinositide-Dependent Protein Kinases</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Sphingolipids</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Endoplasmic Reticulum Stress</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
<term>Stress du réticulum endoplasmique</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Ribosomes</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>3-Phosphoinositide-dependent protein kinases</term>
<term>Facteurs de transcription</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Ribosomes</term>
<term>Saccharomyces cerevisiae</term>
<term>Sphingolipides</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Tunicamycine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Tunicamycin</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="toxicity" xml:lang="en">
<term>Tunicamycin</term>
</keywords>
<keywords scheme="MESH" qualifier="toxicité" xml:lang="fr">
<term>Tunicamycine</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Fungal</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Régulation de l'expression des gènes fongiques</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Reduced ribosome biogenesis in response to environmental conditions is a key feature of cell adaptation to stress. For example, ribosomal genes are transcriptionally repressed when cells are exposed to tunicamycin, a protein glycosylation inhibitor that induces endoplasmic reticulum stress and blocks vesicular trafficking in the secretory pathway. Here, we describe a novel regulatory model, in which tunicamycin-mediated stress induces the accumulation of long-chain sphingoid bases and subsequent activation of Pkh1/2 signaling, which leads to decreased expression of ribosomal protein genes via the downstream effectors Pkc1 and Sch9. Target of rapamycin complex 1 (TORC1), an upstream activator of Sch9, is also required. This pathway links ribosome biogenesis to alterations in membrane lipid composition under tunicamycin-induced stress conditions. Our results suggest that sphingolipid/Pkh1/2-TORC1/Sch9 signaling is an important determinant for adaptation to tunicamycin-induced stress.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30824472</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>09</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>05</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1943-2631</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>212</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2019</Year>
<Month>05</Month>
</PubDate>
</JournalIssue>
<Title>Genetics</Title>
<ISOAbbreviation>Genetics</ISOAbbreviation>
</Journal>
<ArticleTitle>Sphingolipid/Pkh1/2-TORC1/Sch9 Signaling Regulates Ribosome Biogenesis in Tunicamycin-Induced Stress Response in Yeast.</ArticleTitle>
<Pagination>
<MedlinePgn>175-186</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1534/genetics.118.301874</ELocationID>
<Abstract>
<AbstractText>Reduced ribosome biogenesis in response to environmental conditions is a key feature of cell adaptation to stress. For example, ribosomal genes are transcriptionally repressed when cells are exposed to tunicamycin, a protein glycosylation inhibitor that induces endoplasmic reticulum stress and blocks vesicular trafficking in the secretory pathway. Here, we describe a novel regulatory model, in which tunicamycin-mediated stress induces the accumulation of long-chain sphingoid bases and subsequent activation of Pkh1/2 signaling, which leads to decreased expression of ribosomal protein genes via the downstream effectors Pkc1 and Sch9. Target of rapamycin complex 1 (TORC1), an upstream activator of Sch9, is also required. This pathway links ribosome biogenesis to alterations in membrane lipid composition under tunicamycin-induced stress conditions. Our results suggest that sphingolipid/Pkh1/2-TORC1/Sch9 signaling is an important determinant for adaptation to tunicamycin-induced stress.</AbstractText>
<CopyrightInformation>Copyright © 2019 by the Genetics Society of America.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yabuki</LastName>
<ForeName>Yukari</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ikeda</LastName>
<ForeName>Atsuko</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Araki</LastName>
<ForeName>Misako</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kajiwara</LastName>
<ForeName>Kentaro</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mizuta</LastName>
<ForeName>Keiko</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Funato</LastName>
<ForeName>Kouichi</ForeName>
<Initials>K</Initials>
<Identifier Source="ORCID">0000-0002-1486-1296</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan kfunato@hiroshima-u.ac.jp.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>03</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Genetics</MedlineTA>
<NlmUniqueID>0374636</NlmUniqueID>
<ISSNLinking>0016-6731</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013107">Sphingolipids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C561842">TORC1 protein complex, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>11089-65-9</RegistryNumber>
<NameOfSubstance UI="D014415">Tunicamycin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D064413">3-Phosphoinositide-Dependent Protein Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="C118385">PKH1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="C118386">PKH2 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D017346">Protein-Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="C530964">SCH9 protein, S cerevisiae</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D064413" MajorTopicYN="N">3-Phosphoinositide-Dependent Protein Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059865" MajorTopicYN="N">Endoplasmic Reticulum Stress</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017346" MajorTopicYN="N">Protein-Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012270" MajorTopicYN="N">Ribosomes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="Y">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013107" MajorTopicYN="N">Sphingolipids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014415" MajorTopicYN="N">Tunicamycin</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
<QualifierName UI="Q000633" MajorTopicYN="N">toxicity</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">TORC1-Sch9</Keyword>
<Keyword MajorTopicYN="Y">ribosome</Keyword>
<Keyword MajorTopicYN="Y">sphingolipid-Pkh1/2</Keyword>
<Keyword MajorTopicYN="Y">stress response</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>12</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>02</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>3</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>9</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>3</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30824472</ArticleId>
<ArticleId IdType="pii">genetics.118.301874</ArticleId>
<ArticleId IdType="doi">10.1534/genetics.118.301874</ArticleId>
<ArticleId IdType="pmc">PMC6499531</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Curr Biol. 1999 Feb 25;9(4):186-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10074427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 May 7;274(19):13235-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10224082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1999 Nov;24(11):437-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10542411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2000 Jun;20(11):3843-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10805727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2000 Jun 15;19(12):2824-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10856228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2000 Jul;11(7):2445-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10888680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2000 Dec;11(12):4241-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11102521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2001 Feb;12(2):323-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11179418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2001 Aug;8(2):281-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11545731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2001 Dec 3;20(23):6783-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11726514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2001 Dec 10;155(6):949-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11733544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 May 24;277(21):18334-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11893754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2002 Sep;2(4-5):181-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12192591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2002 Sep;13(9):3005-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12221112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Sep;10(3):457-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12408816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2002 Dec 24;41(51):15105-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12484746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2003 Jan;23(2):699-707</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12509467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Apr 1;31(7):1969-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12655014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2004 Dec;168(4):1899-913</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15371354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Dec 23;432(7020):1054-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15616568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Dec 23;432(7020):1058-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15616569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 Dec 29;119(7):969-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15620355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2005 Feb 23;24(4):730-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15692566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2005 Feb 21;1687(1-3):130-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15708361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jun 17;280(24):22679-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15840588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glycobiology. 2006 Feb;16(2):155-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16177263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2006 Aug 1;20(15):2030-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16882981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Jun 8;26(5):663-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17560372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2007 Nov;13(11):1977-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17804645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2007 Dec 12;26(24):4946-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18034155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2008 Apr 9;27(7):1049-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18323774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 2008 Apr;72(4):1080-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18391458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2008 Oct;7(10):1819-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18723607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2009 Jun 29;185(7):1227-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19564405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2009 Sep 11;35(5):563-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19748353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genomics. 2009 May;10(3):198-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19881913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):34-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19966303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Jul 23;142(2):256-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20619447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2011 Nov 03;12(12):833-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22048664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2011 Dec;189(4):1145-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22174182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2011 Dec;189(4):1177-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22174183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2012 Feb;8(2):e1002493</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22319457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2012 May;191(1):107-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22377630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2012 Dec 11;23(6):1129-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23237950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2014 Jan 15;127(Pt 2):376-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24213531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2014 Feb 13;6(3):541-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24462291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):E2271-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24843123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 2014;78(5):800-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25035982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2014 Oct;198(2):773-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25085507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2015 Jan 5;208(1):71-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25547157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2015 Apr;33:82-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25569848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2015 Apr;35(7):1269-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25624345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2015 May 25;209(4):539-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25987606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2015 Jul 15;128(14):2454-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26045446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2015 Dec 15;26(25):4618-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26466677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2016 Jan 15;27(2):382-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26609069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Lipid Res. 2016 Jan;61:109-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26703187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2016 Aug;1861(8 Pt B):784-792</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26747648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2016 Nov 17;64(4):720-733</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27818142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2017 Apr;34(4):155-163</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27862269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta Mol Cell Res. 2017 Sep;1864(9):1450-1458</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28554771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2017 Oct 1;28(20):2589-2599</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28794263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2018 Feb 15;29(4):510-522</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29237820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2018 Feb 5;217(2):495-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29317528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1994 Apr;14(4):2493-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8139552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1998 Feb 15;26(4):1063-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9461469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1998 Jan;148(1):99-112</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9475724</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
</list>
<tree>
<country name="Japon">
<noRegion>
<name sortKey="Yabuki, Yukari" sort="Yabuki, Yukari" uniqKey="Yabuki Y" first="Yukari" last="Yabuki">Yukari Yabuki</name>
</noRegion>
<name sortKey="Araki, Misako" sort="Araki, Misako" uniqKey="Araki M" first="Misako" last="Araki">Misako Araki</name>
<name sortKey="Funato, Kouichi" sort="Funato, Kouichi" uniqKey="Funato K" first="Kouichi" last="Funato">Kouichi Funato</name>
<name sortKey="Ikeda, Atsuko" sort="Ikeda, Atsuko" uniqKey="Ikeda A" first="Atsuko" last="Ikeda">Atsuko Ikeda</name>
<name sortKey="Kajiwara, Kentaro" sort="Kajiwara, Kentaro" uniqKey="Kajiwara K" first="Kentaro" last="Kajiwara">Kentaro Kajiwara</name>
<name sortKey="Mizuta, Keiko" sort="Mizuta, Keiko" uniqKey="Mizuta K" first="Keiko" last="Mizuta">Keiko Mizuta</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000229 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000229 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30824472
   |texte=   Sphingolipid/Pkh1/2-TORC1/Sch9 Signaling Regulates Ribosome Biogenesis in Tunicamycin-Induced Stress Response in Yeast.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30824472" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020